The influence of cutting parameters on micro-topography of frequency features extracted from the machined KH2PO4 surfaces

Author:

Pang Qilong1,Kuang Liangjie1ORCID,Xu Youlin1

Affiliation:

1. College of Mechanical and Electrical Engineering, Nanjing Forestry University, Nanjing, China

Abstract

Using reasonable cutting parameters of machining process is an effective and convenient means of improving the topography of the machined surfaces. In this study, the methods to find optimised cutting parameters can be obtained by studying the relationship between the cutting parameters and the micro-topography of frequency features in the machined KH2PO4 surfaces. Using the power spectral density and continuous wavelet transform methods, the 2D micro-topographies of frequencies corresponding to different cutting parameters are extracted from the machined KH2PO4 surfaces. The results for the extracted micro-topography are used to analyse the influence of cutting parameters on the spatial frequency feature which consists of the wavelength and amplitude. The middle-frequency feature reflects the variations of depth of cut and spindle speed, and the amplitude of it is directly proportional to depth of cut and spindle speed. The low-frequency feature reflects the variations of the feed rate and decreases to a smaller value when the feed rate increases. The high-frequency feature is mainly affected by the material properties and the vibrations that occur during processing. Comparing the micro-topography of frequencies under different cutting parameters, the depth of cut (3 μm), the spindle speed (400 r/min) and the feed rate (8 μm/r) are the optimised cutting parameters for the machine tools used in this article. In the process of reconstructing the arbitrary frequency topography, the continuous wavelet transform method can compensate for the deficiencies of the power spectral density method for extracting frequencies.

Funder

Jiangsu Science and New Agricultural Engineering

science and technology support program of jiangsu province

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3