Integration of cell formation and job sequencing to minimize energy consumption with minimum make-span

Author:

Iqbal Neelum1,Aziz Muhammad Haris1,Jahanzaib Mirza1,Ahmad Wasim1,Hussain Salman1

Affiliation:

1. Department of Industrial Engineering, University of Engineering and Technology – Taxila, Taxila, Pakistan

Abstract

Cell formation is the fundamental step while designing a cellular manufacturing system. Integration of job sequencing with cell formation can attain lower make-spans. The traditional cell formation and scheduling problems consider performance indicators such as productivity, time and flexibility in cellular manufacturing system; however, energy consumption has not been given due attention. Therefore, this research addressed the minimization of total energy consumption by implementing an energy-efficient schedule at the cell formation stage of cellular manufacturing system. For this purpose, a two-phase approach is proposed; in phase I, formation of independent cells is being carried out by considering energy-efficient routings and genetic algorithm is used for improving search performance. In phase II, a formulation is being developed to compute the total energy of the system based on optimal job sequence with respect to minimum idle running of the machines in each independent cell. For the proposed approach, a code is being developed in MATLAB software. Different sample problems have been evaluated. The results showed that the proposed approach is effective in generating independent cells and sequences with minimum energy consumption and make-span.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3