A comparison of in situ and impedance eduction experimental techniques for acoustic liners with grazing flow and high sound pressure level

Author:

Bonomo Lucas A1ORCID,Quintino Nicolas T1,Spillere André M N12ORCID,Murray Paul B3,Cordioli Julio A1ORCID

Affiliation:

1. Laboratory of Vibration and Acoustics, Federal University of Santa Catarina, Florianópolis, Brazil

2. Currently Dynamox SA, Florianópolis, Brazil

3. Institute of Sound and Vibration Research, University of Southampton, Southampton, UK

Abstract

Several techniques are available to characterize acoustic liners when subject to grazing flow and high sound pressure level (SPL). Although the in situ technique started as the primary experimental procedure, impedance eduction techniques have gained popularity over the past years. However, there is a lack of comparison between these group of methods, especially at conditions typically found in turbofan engines. In this work, in situ and impedance eduction techniques are compared at high flow velocities and SPL using typical acoustic liner test samples and considering uniform flow. Both upstream and downstream acoustic wave propagation will also be considered in view of the discrepancies recently observed by eduction methods. A new method to compensate the instrumentation effect in the in situ technique is proposed and validated. Results are obtained for bulk Mach numbers up to 0.5 and SPLs up to 145 dB for both in situ and two eduction techniques. The three methods presents good agreement in the absence of flow. Unexpected results are observed with higher flow Mach numbers using the eduction technique.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Embraer

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Financiadora de Estudos e Projetos

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3