Impedance models for single and two degree of freedom linings with an improved data base and local non-linearity

Author:

Eversman Walter1ORCID,Drouin Mary2

Affiliation:

1. Missouri University of Science and Technology, Rolla, MO, USA

2. Spirit AeroSystems, Inc, Wichita, KS, USA

Abstract

Previously developed predictive models for impedance of single-degree-of-freedom and two-degree-of-freedom acoustic linings driven by a broad band acoustic source are reexamined. Two issues are addressed, the first being improvement of the conventional perforate face sheet impedance model. Data correlations based on flow bench measurements of steady flow pressure drop are reevaluated with emphasis on low flow velocity to improve the consistency of the prediction of linear resistance. In addition, for two-degree-of-freedom linings, face sheet mass reactance is modified to account for the presence of the septum. The second issue addresses the implication that for a non-linear lining, with impedance a function of the local sound pressure level, the installed performance of the lining depends on the local impedance, as opposed to impedance based on the source sound pressure level. This is investigated in the benchmarking of the impedance models by comparison of the acoustic transfer function predicted by a propagation code with the imbedded impedance model and transfer function measurements made in a grazing flow duct test facility. The propagation code is extended to make the non-linear behavior of the lining model dependent on the local acoustic spectrum, introducing an additional level of non-linearity and an iterative application of the propagation code. A principal conclusion is that with no grazing flow both the lining model and grazing flow duct transfer function measurements show a significant effect of local variation of the acoustic spectrum. With increasing grazing flow Mach number, this effect is reduced and effectively disappears at the highest Mach number. With increasing grazing flow Mach number the grazing flow contribution to face sheet resistance dominates and tends to mask the non-linear behavior of the component of resistance not related to grazing flow.

Publisher

SAGE Publications

Subject

Acoustics and Ultrasonics,Aerospace Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3