Nano-Clay and Iron Impregnated Clay Nanocomposite for Cu2+ and Pb2+ Ions Removal from Aqueous Solutions

Author:

Tarekegn Mekonnen Maschal1ORCID,Balakrishnan Raj Mohan2,Hiruy Andualem Mekonnen1,Dekebo Ahmed Hussen1,Maanyam Hema Susmitha2

Affiliation:

1. Addis Ababa University, Ethiopia

2. National Institute of Technology Karnataka, Surathkal, Mangalore, India

Abstract

Several physicochemical techniques have been widely studied for heavy metals removal despite most of them are associated with challenges of higher cost, accessibility, and complex technical feasibility. In this study, nano-sorbent materials were developed from a naturally available clay matrices and its heavy metals (Cu2+ and Pb2+) removal capacity was tested at its pristine and iron impregnated form. Both top to down and borohydride reduction methods were used to produce the nano-sorbents. The nano-sorbents were characterized by XRD, XRF, SEM, FTIR, BET, and TGA/DGA. The sorption was studied in batch experiments. The surface area, pore-volume, and pore diameter of nano-clay were found 43.49 m2/g, 0.104 cm3/g, and 2.81 nm, respectively while iron impregnated nano-clay has shown a surface area (73.11 m2/g), pore-volume (0.153 m3/g), and pore diameter (3.83 nm). Both nanoparticles have shown a mesoporous nature. The highest Cu2+ and Pb2+ removal capacity of nano-clay was 99.2% (~11.9 mg/g) and 99.6% (~11.95 mg/g), respectively. Whereas, the iron impregnated nano-clay has achieved the highest Cu2+ and Pb2+ removal efficiency 99.8% (~11.97 mg/g) and 99.7% (11.96 mg/g), respectively. The highest Cu2+ adsorption efficiency of iron impregnated nanoclay was achieved at pH 5.0, adsorbent dose 0.83 g/L, contact time 150 minutes, and Cu2+ initial concentration 4 ppm while its highest Pb2+ adsorption activity was achieved at pH 5.0, contact time (90 minutes), Pb2+ initial concentration (6 ppm), and the adsorbent dose (0.67 g/L). Whereas, the Cu2+ adsorption using nano-clay was highest at pH 5.0, contact time (180 minutes), adsorbent dose (1.0 g/L), and Cu2+ initial concentration (2 ppm). While, pH 5.0, contact time (90 minutes), adsorbent dose (0.83 g/L), and Pb2+ initial concentration (4 ppm) was found to the conditions of highest Pb2+ removal. In all cases, the pseudo-second-order kinetics indicated the presence of chemisorption. Langmuir adsorption characteristics has been reflected on Pb2+ and Cu2+ removal activities of the nanoclay and iron impregnated nanoclay, respectively. Whereas, Freundlich isotherm model was better fitted for Cu2+ adsorption activity of the nanoclay. The −ΔG (<−20 KJ/mol), + ΔH°, and + ΔS° have shown a spontaneous and endothermic adsorption activity with a high level of adsorbents disorder. In general, the result of iron impregnated nano-clay has shown a promising result for the removal of Cu2+ and Pb2+ aqueous solution.

Funder

national institute of technology karnataka, surathkal

Publisher

SAGE Publications

Subject

General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3