Variability in oxygen delivery with bag-valve-mask devices: An observational laboratory simulation study

Author:

Dodds Jarron M1ORCID,Appelqvist Dylan I2,Paleologos Michael S34,Downey Ryan G34

Affiliation:

1. Department of Anaesthesia and Acute Pain Medicine, St Vincent’s Hospital, Melbourne, Australia

2. The University of Notre Dame, Sydney, Australia

3. Department of Anaesthesia, Royal Prince Alfred Hospital, Sydney, Australia

4. Sydney Medical School, University of Sydney, Sydney, Australia

Abstract

A bag-valve-mask (BVM) is a portable handheld medical device commonly used in airway management and manual ventilation. Outside of the operating theatre, BVM devices are often used to pre-oxygenate spontaneously breathing patients before intubation to reduce the risk of hypoxaemia. Pre-oxygenation is considered adequate when the end-tidal expiratory fraction of oxygen is greater than 0.85. There are reports that some BVM devices fail to deliver a satisfactory inspired oxygen (FiO2) in spontaneously breathing patients due to variability in design. The primary aim of this study was to evaluate the efficacy of oxygen delivery of a broad range of adult and paediatric BVM devices at increasing tidal volumes using a mechanical lung to simulate spontaneous ventilation. The secondary aim was to evaluate the effect of BVM design on performance. Forty BVM devices were evaluated in a laboratory setting as part of a safety assessment requested by HealthShare New South Wales. The oxygen inlet of each BVM device was primed with 100% oxygen (15 l/min) for two min. The BVM device was then attached to the mechanical lung and commenced spontaneous breathing at a fixed respiratory rate of 12 breaths/min with an inspiratory: expiratory ratio of 1:2. For each device FiO2 was measured after two min of spontaneous breathing. This process was repeated with small (250 ml), medium (500 ml) and large (750 ml) tidal volumes simulating adult breathing in adult BVM devices, and small (150 ml), medium (300 ml) and large (450 ml) tidal volumes simulating paediatric breathing in paediatric BVM devices. The test was repeated using up to five BVM devices of the same model (where supplied) at each tidal volume as a manufacturing quality control measure. Eight of the 40 devices tested failed to deliver a FiO2 above 0.85 for at least one tidal volume, and five models failed to achieve this at any measured tidal volume. Concerningly, three of these devices delivered a FiO2 below 0.55. Six of the eight poorly performing devices delivered reducing concentrations of inspired oxygen with increasing tidal volumes. Devices which performed the worst were those with a duckbill non-rebreather valve and without a dedicated expiratory valve. Several BVM devices available for clinical use in Australia did not deliver sufficient oxygen for reliable pre-oxygenation in a spontaneously breathing in vitro model. Devices with a duckbill non-rebreather valve and without a dedicated expiratory valve performed the worst. It is imperative that clinicians using BVM devices to deliver oxygen to spontaneously breathing patients are aware of the characteristics and limitations of the BVM devices, and that the standards for manufacture are updated to require safe performance in all clinical circumstances.

Publisher

SAGE Publications

Subject

Anesthesiology and Pain Medicine,Critical Care and Intensive Care Medicine

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3