Modeling Behavior as Dynamic Sequential States: Introduction to the Special Issue

Author:

Flaherty Brian P.1ORCID,Scheier Lawrence M.23ORCID

Affiliation:

1. Quantitative Psychology, University of Washington, Seattle, WA, USA

2. LARS Research Institute, Inc, Scottsdale, AZ, USA

3. Prevention Strategies, Greensboro, NC, USA

Abstract

This special issue of Evaluation and The Health Professions focuses on applications and extensions of latent transition analysis (LTA), a longitudinal parameterization of the latent class (LC) model. LTA is a model of discrete or qualitative change over time among potentially complex states (e.g., patterns of recent drug use or abuse experiences), commonly referred to as latent classes, latent profiles, or latent statuses. Frequently, researchers will distinguish the term “classes” for cross-sectional studies and with LTA use “statuses” to indicate the concept of “dynamic change” with individuals shifting in their response patterns and associated statuses over time. It goes without saying that LTA models are underutilized, although quite flexible. This special issue showcases articles that apply LTA and extend the capabilities of this approach to modeling discrete change in new ways.

Publisher

SAGE Publications

Subject

Health Policy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3