Formation control for autonomous robots with collision and obstacle avoidance using a rotational and repulsive force–based approach

Author:

Dang Anh Duc1,La Hung Manh2,Nguyen Thang3ORCID,Horn Joachim1

Affiliation:

1. Institute of Control Engineering, University of the Federal Armed Forces Hamburg, Holstenhofweg, Hamburg, Germany

2. Department of Computer Science and Engineering, Advanced Robotics and Automation Lab, University of Nevada, Reno, NV, USA

3. Modeling Evolutionary Algorithms Simulation and Artificial Intelligence, Faculty of Electrical and Electronics Engineering, Ton Duc Thang University, Ho Chi Minh City, Vietnam

Abstract

In this article, we address a formation control problem for a group of autonomous robots to track a moving target in the presence of obstacles. In the proposed method, desired formations, which consist of virtual nodes arranged in specific shapes, are first generated. Then, autonomous robots are driven toward these virtual nodes without collisions with each other using a novel control scheme, which is based on artificial force fields. The convergence analysis is shown based on Lyapunov’s stability. The novelty of the proposed approach lies in a new combination of rotational force field and repulsive force field to design a mechanism so that robots can avoid and escape complex obstacle shapes. The effectiveness of the proposed method is illustrated with numerical examples using V-shape and circular shape formations.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3