A novel fatigue detection method for rehabilitation training of upper limb exoskeleton robot using multi-information fusion

Author:

Wang Wendong1ORCID,Li Hanhao1,Kong Dezhi1,Xiao Menghan1,Zhang Peng2

Affiliation:

1. School of Mechanical Engineering, Northwestern Polytechnical University, Beilin District, Xi’an, China

2. Training Center for Engineering Practices, Northwestern Polytechnical University, Xi’an, China

Abstract

The utilization of upper extremity exoskeleton robots has been proved to be a scientifically effective approach for rehabilitation training. In the process of rehabilitation training, it is necessary to detect the fatigue degree during rehabilitation training in order to formulate a reasonable training plan and achieve better training efficiency. Based on the integral value of surface electromyography (sEMG), heart rate variability, and instantaneous heart rate, this article proposes a fatigue judgment method for multi-information fusion. Based on the integral value data, the feature extraction of the bioelectrical signals were implemented separately, then the fatigue recognition was conducted using the decision-level data fusion method. The bioelectrical signal acquisition system of electromyogram signals and electrocardiograph signals was developed for upper limb exoskeleton rehabilitation robot, and the acquisition and processing of electromyogram signals and electrocardiograph signals were completed. Finally, the fuzzy logic controller with instantaneous heart rate, heart rate variability, and surface electromyography signal was designed to judge fatigue degree, including the fuzzy device, fuzzy rule selector, and defuzzifier. The moderate fatigue state data were selected for testing, and the experimental results showed that the error of fatigue judgment is 4.3%, which satisfies the requirements of fatigue judgment.

Funder

Natural Science Foundation of Shaanxi Province

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3