Calibrating intuitive and natural human–robot interaction and performance for power-assisted heavy object manipulation using cognition-based intelligent admittance control schemes

Author:

Rahman S M Mizanoor1,Ikeura Ryojun2

Affiliation:

1. Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York, USA

2. Division of Mechanical Engineering, Graduate School of Engineering, Mie University, Tsu, Mie, Japan

Abstract

In the first step, a one degree of freedom power assist robotic system is developed for lifting lightweight objects. Dynamics for human–robot co-manipulation is derived that includes human cognition, for example, weight perception. A novel admittance control scheme is derived using the weight perception–based dynamics. Human subjects lift a small-sized, lightweight object with the power assist robotic system. Human–robot interaction and system characteristics are analyzed. A comprehensive scheme is developed to evaluate the human–robot interaction and performance, and a constrained optimization algorithm is developed to determine the optimum human–robot interaction and performance. The results show that the inclusion of weight perception in the control helps achieve optimum human–robot interaction and performance for a set of hard constraints. In the second step, the same optimization algorithm and control scheme are used for lifting a heavy object with a multi-degree of freedom power assist robotic system. The results show that the human–robot interaction and performance for lifting the heavy object are not as good as that for lifting the lightweight object. Then, weight perception–based intelligent controls in the forms of model predictive control and vision-based variable admittance control are applied for lifting the heavy object. The results show that the intelligent controls enhance human–robot interaction and performance, help achieve optimum human–robot interaction and performance for a set of soft constraints, and produce similar human–robot interaction and performance as obtained for lifting the lightweight object. The human–robot interaction and performance for lifting the heavy object with power assist are treated as intuitive and natural because these are calibrated with those for lifting the lightweight object. The results also show that the variable admittance control outperforms the model predictive control. We also propose a method to adjust the variable admittance control for three degrees of freedom translational manipulation of heavy objects based on human intent recognition. The results are useful for developing controls of human friendly, high performance power assist robotic systems for heavy object manipulation in industries.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3