Transportable open-source application program interface and user interface for generic humanoids: TOUGH

Author:

Jagtap Vinayak1ORCID,Agarwal Shlok2,Wagh Ameya1,Gennert Michael1

Affiliation:

1. Robotics Engineering, Worcester Polytechnic Institute, Worcester, MA, USA

2. Ghost Robotics Corporation, Worcester, MA, USA

Abstract

Humanoid robotics is a complex and highly diverse field. Humanoid robots may have dozens of sensors and actuators that together realize complicated behaviors. Adding to the complexity is that each type of humanoid has unique application program interfaces, thus software written for one humanoid does not easily transport to others. This article introduces the transportable open-source application program interface and user interface for generic humanoids, a set of application program interfaces that simplifies the programming and operation of diverse humanoid robots. These application program interfaces allow for quick implementation of complex tasks and high-level controllers. Transportable open-source application program interface and user interface for generic humanoids has been developed for, and tested on, Boston Dynamics’ Atlas V5 and NASA’s Valkyrie R5 robots. It has proved successful for experiments on both robots in simulation and hardware, demonstrating the seamless integration of manipulation, perception, and task planning. To encourage the rapid adoption of transportable open-source application program interface and user interface for generic humanoids for education and research, the software is available as Docker images, which enable quick setup of multiuser simulation environments.

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Stereo Image-based Visual Servoing Towards Feature-based Grasping;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3