Spatio-temporal voxel layer: A view on robot perception for the dynamic world

Author:

Macenski Steve1ORCID,Tsai David1,Feinberg Max2

Affiliation:

1. Simbe Robotics, San Francisco, CA, USA

2. Jetson Robotics, Deerfield, IL, USA

Abstract

The spatio-temporal voxel grid is an actively maintained open-source project providing an improved three-dimensional environmental representation that has been garnering increased adoption in large, dynamic, and complex environments. We provide a voxel grid and the Costmap 2-D layer plug-in, Spatio-Temporal Voxel Layer, powered by a real-time sparse occupancy grid with constant time access to voxels which does not scale with the environment’s size. We replace ray-casting with a new clearing technique we dub frustum acceleration that does not assume a static environment and in practice, represents moving environments better. Our method operates at nearly 400% less CPU load on average while processing 9 QVGA resolution depth cameras as compared to the voxel layer. This technique also supports sensors such as three-dimensional laser scanners, radars, and additional modern sensors that were previously unsupported in the available ROS Navigation framework that has become staples in the roboticists’ toolbox. These sensors are becoming more widely used in robotics as sensor prices are driven down and mobile compute capabilities improve. The Spatio-Temporal Voxel Layer was developed in the open with community feedback over its development life cycle and continues to have additional features and capabilities added by the community. As of February 2019, the Spatio-Temporal Voxel Layer is being used on over 600 robots worldwide in warehouses, factories, hospitals, hotels, stores, and libraries. The open-source software can be viewed and installed on its GitHub page at https://github.com/SteveMacenski/spatio_temporal_voxel_layer .

Publisher

SAGE Publications

Subject

Artificial Intelligence,Computer Science Applications,Software

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. nvblox: GPU-Accelerated Incremental Signed Distance Field Mapping;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

2. Streamlined Acquisition of Large Sensor Data for Autonomous Mobile Robots to Enable Efficient Creation and Analysis of Datasets;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

3. AutoExplorers: Autoencoder-Based Strategies for High-Entropy Exploration in Unknown Environments for Mobile Robots;2024 IEEE International Conference on Robotics and Automation (ICRA);2024-05-13

4. RoboCup@Home SSPL Champion 2023: RoboBreizh, a Fully Embedded Approach;Lecture Notes in Computer Science;2024

5. 3D traversability analysis and path planning based on mechanical effort for UGVs in forest environments;Robotics and Autonomous Systems;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3