Influence of shaft combined misalignment on vibration and noise characteristics in a marine centrifugal pump

Author:

Ma Qijiang12ORCID,Wang Kai13ORCID,Liu Houlin1,Cheng Zhiming1

Affiliation:

1. National Research Center of Pumps and Pumping System Engineering and Technology, Jiangsu University, China

2. School of Mechanical and Electrical Engineering, Chuzhou University, China

3. Xinxiang Aviation Industry (Group) Co., Ltd, China

Abstract

Shaft combined misalignment is the main form of shaft misalignment fault in a marine centrifugal pump. To investigate the influence of shaft misalignment on the vibration and noise of marine centrifugal pumps, a marine pump is experimentally measured under normal condition and shaft combined misalignment condition. In this paper, the frequency domain characteristics of vibration and noise are analyzed by Fast Fourier transform technique. The characteristics of axis orbit, the spectral characteristics of vibration and noise, and the One-Third octave spectral distribution characteristics are also comprehensively compared. Results show that after shaft combined misalignment occurs, the maximum amplitudes of 1APF (axial passing frequency) in the X and Y directions at M1 increase by 35.06% and 24.04%, the maximum amplitudes of 2APF in the X and Y directions at M1 increase by 2.61 times and 2.61 times, and the axis orbit shows a clockwise variation of the “8” shape. As the flow rate decreases, the shape of an “8” of the rotor axis orbit becomes progressively flatter. The maximum Overall vibration velocity level (OAVL) of M2 and M5 decreases by 12.03% and 1.79%, and the maximum OAVL of M3 and M4 increases by 6.52% and 2.27%. The frequency domain amplitude of M6 increases significantly in 1APF and 2APF, and the maximum increases are 12.41% and 2.24% at different flow rates. The overall sound pressure level of M6 increases by 0.42% at 0.6 Qd. These findings indicate the vibration energy of M1-M5 and noise energy of M6 are related to the running condition. The axis orbit of M1 shows the shape of 8, which can significantly judge the misalignment of the shafting. Then, combined with the amplitude variation of 1APF and 2APF of the M2-M6 spectrum, the comprehensive misalignment of shafting can be further judged. The above discoveries provide reference to the diagnosis of shaft combined misalignment fault that occurred for the marine pump.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3