Development and verification of hydroelastic model experiment for the flow-induced vibration analysis of roller compacted concrete dam

Author:

Li Yijia12,Hu Jianchao3,Ma Bin2,Liang Chao45ORCID

Affiliation:

1. School of Management, Tianjin University of Technology, Tianjin, China

2. State Key Laboratory of Hydraulic Engineering Simulation and Safety, Tianjin University, Tianjin, China

3. Bei Fang Investigation, Design & Research Co., Ltd, Tianjin, China

4. Postdoctoral Workstation, Yellow River Engineering Consulting Co., Ltd, Zhengzhou, China

5. Postdoctoral Research Station of Water Conservancy Engineering, Hohai University, Nanjing, China

Abstract

To carry out the experimental study of flow-induced vibration for roller compacted concrete dam (RCCD), the improved hydroelastic model experiment (HEME) technology that satisfying both the hydraulic and structural dynamic similarities is presented, and an improved combinatorial method is proposed to effectively and accurately calculate the dynamic characteristics of RCCD model under natural excitation and complex environment. Due to the insufficient study on the simulation technique for the interfaces between adjacent concrete layers in RCCD, the conventional HEME technology which is frequently applied is not applicable to the RCCD dynamic analysis. Therefore, the hydroelastic simulation schemes for cold joints and ordinary interfaces in RCCD are firstly presented based on experimental and theoretical researches and numerical verification. Then, the integral RCCD model is established and its dynamic displacements under flood discharge excitation are tested. Furthermore, the proposed method that combines the advantages of natural excitation technique (NExT), singular entropy (SE) method, and eigensystem realization algorithm with data correlation (ERA/DC) method is applied to calculate the dynamic characteristics of RCCD model. The dynamic characteristics of the RCCD model calculated by the proposed theoretical method are very similar to those of the actual RCCD calculated by numerical simulation, which indicate the effectiveness and accuracy for the improved HEME technology and combinatorial method.

Funder

Fund for Key Research Area Innovation Groups of China Ministry of Science and Technology

Science Fund for Creative Research Groups of the National Natural Science Foundation of China

National Natural Science Foundation of China

Program of Introducing Talents of Discipline to Universities

Tianjin Innovation Team Foundation of Key Research Areas

National Key R&D Program of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3