Research on dynamic characteristics of plate under pedestrian excitation based on Newmark-β

Author:

Ge Xinfang1,Wang Weirong1,Yuan Wei1

Affiliation:

1. School of Mechanical Engineering, Hefei University of Technology, Hefei, China

Abstract

Development of micro and ultra-precision machining, precision instruments and equipment, precision assembly and testing has put forward more and more high requirements to vibration isolation on environmental elements, especially the pedestrian excitation generated by workers' normal walking. Therefore, it is very important to study the pedestrian excitation's influence on vibration characteristics of precision instruments and equipment. In this study, dynamic model including mathematical model of pedestrian excitation, interaction model between pedestrian and rectangular plate structure, the human–plate coupled dynamic equation in vertical direction of pedestrian–plate structure was established. And then we use the Newmark-β method to solve the time-domain step-by-step integration of the first four order modes' dynamic equations and study the influence of the linear notion trajectory along the central axis direction on the dynamic characteristics of the rectangular plate. By simulation, we discussed plate structure response under different conditions, including plate structure displacement and acceleration response under the single person excitation with different velocities, under normal walking velocity with different number of pedestrians and under this case of different distance between two pedestrians. The results show that the structural vibration induced by pedestrian excitation has great influence on dynamic characteristics of plate.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical investigation on the effect of the vessel rolling angle and period on the energy harvest;Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment;2021-03-11

2. Seismic Response of an Educational Building under Moving Mass Due to Earthquake Evacuation;IOP Conference Series: Materials Science and Engineering;2021-01-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3