Effect of metallic substrate and rubber elastic materials over passive constrained layer damping on tool vibration during boring process

Author:

Lawrance G1,Paul P Sam1,Shylu DS2,Ebenezer Jacob Dhas DS1,Dineshkumar C3,Jeyakumar PD3,Muthiya Solomon Jenoris4ORCID,Getachew Netsanet Ayele5

Affiliation:

1. Department of Mechanical Engineering, Karunya Institute of Technology Sciences, Coimbatore, India

2. Department of Electronics and Communication Engineering, Karunya Institute of Technology Sciences, Coimbatore, India

3. Department of Automobile Engineering, BS Abdur Rahman Crescent Institute of Science and Technology, Chennai, India

4. Department of Automobile Engineering, Dayananda Sagar College of Engineering, Bengaluru, India

5. Faculty of Mechanical Engineering, Arba Minch University, Arba Minch, Ethiopia

Abstract

Tool vibration is a key factor that affects surface finish, generates noise, and reduces the tool life during conventional boring because of the excessive overhanging length of the tool holder. The interaction between the dynamics of the machine tool and the boring process led to progressive vibration. The creation of appropriate mechanisms in reducing tool vibration will help manufacturing industries to become more productive. In this research, in order to control vibration in the overhanging boring bar, a passive vibration control method was employed. Constrained layer dampers consist of boring bar, substrate, and elastic materials and it is used to minimize tool vibration produced during boring operation. The investigation utilized computational analysis through the ANSYS Workbench platform, employing key parameters such as the overhanging length of the tool holder (100, 150, and 200 mm), substrate material (aluminum, brass, and copper), and elastic material (Nitrile rubber, Natural rubber, and polyurethane). A comprehensive series of 27-run boring experiments were conducted to assess the impact of the constrained layer damper on tool vibration and cutting properties. The results of the study revealed remarkable improvements in various performance metrics. The constrained layer damper demonstrated an impressive 98% reduction in tool vibration, signifying its efficacy in dampening vibrational forces during the boring operation. Furthermore, a substantial 83% decrease in surface roughness was observed, indicating enhanced machining precision and surface finish. The constrained layer damper also exhibited a noteworthy 97.5% reduction in tool wear, highlighting its ability to significantly prolong tool life under challenging machining conditions.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3