Optimization and analysis of mine drainage pump with high efficiency and large flow

Author:

Wang Yong1,Wang Xiaolin1ORCID,Liu Houlin1,Xie Lei1

Affiliation:

1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, China

Abstract

This paper aimed to systematically maximize hydraulic efficiency and pump head for mine drainage pump using numerical simulation method and optimization design method. First, the preliminary design of the pump is carried out according to the traditional design method, and then the impeller and diffuser of mine drainage pump are optimized by orthogonal test method and computational fluid dynamics numerical simulation method aiming at the hydraulic efficiency of the pump. The results show that under the rated working conditions, the hydraulic efficiency of the optimized mine drainage pump is 82.11%, the pump head is 25.94 m, and the hydraulic efficiency and pump head are increased by 3.58% and 1.53 m, respectively. Furthermore, under the flow conditions of 0.8 Qd, 1.0 Qd and 1.2 Qd, the average radial force of the optimized impeller is reduced by 22.4  N, 18.5  N and 13.1  N respectively, and the average axial force is reduced by 36.7  N, 30.2  N and 27.3  N compared with the original scheme. It indicated that the optimization effect of mine drainage pump is obvious. Through the analysis of the characteristics of the internal flow field, it is illustrated that the reasonable control of the internal flow law of the pump can effectively improve the hydraulic performance of the pump and improve the stability of the pump operation.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Study on performance and structure optimization of self-priming pump based on response surface method;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2024-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3