Particle swarm optimized fuzzy proportional-integral-derivative controller-based transverse leaf spring active suspension for vibration control

Author:

Zhang Junhong1,Long Feiqi1ORCID,Lin Jiewei1,Zhu Xiaolong1ORCID

Affiliation:

1. State Key Laboratory of Engines, Tianjin University, Tianjin, People’s Republic of China

Abstract

The transverse leaf spring (TLS) suspensions are a promising option for van vehicles due to their high load-carrying capacity and excellent handling stability. However, its ride comfort remains a major challenge. This paper investigates and compares the effects of semi-active and active control strategies to enhance the ride comfort of TLS suspensions. Firstly, a four-degree-of-freedom (4-DOF) half-car model and a multi-body dynamics (MBD) model of the TLS suspensions are established. The MBD model has higher accuracy and can describe the medium and high frequency characteristics of the TLS suspensions, such as the suspension offset frequency and the frequency response function of the body vertical acceleration (BVA). Therefore, based on the MBD half-car model with TLS suspensions, this paper proposes an optimal fuzzy PID active control strategy considering the left and right suspension coupling. The optimization objectives are the BVA, the left and right suspensions dynamic deflection, and the left and right wheels dynamic displacement. The integral absolute error is used as the evaluation criterion. The left and right fuzzy PID controllers’ parameters are obtained through particle swarm optimization. Simulation results demonstrate that the particle swarm optimization fuzzy PID active control strategy effectively controls the low-frequency vibration of the TLS suspensions and suppresses the medium- and high-frequency vibration characteristics compared with the traditional skyhook semi-active control strategy. This technology provides a reference for improving the ride comfort of the TLS suspensions.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin Municipality

China Postdoctoral Science Foundation

Publisher

SAGE Publications

Subject

Mechanical Engineering,Geophysics,Mechanics of Materials,Acoustics and Ultrasonics,Building and Construction,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3