A Network-gene-mutation-based model for large network dynamic application reliability evaluation

Author:

Zheng Xiangyu1ORCID,Huang Ning12ORCID,Yi Zhiwei1

Affiliation:

1. School of Reliability and Systems Engineering, Beihang university, Beijing, China

2. Yunnan Innovation Institute of Beihang University, Kunming, china

Abstract

Network evolution model (NEM) is a framework proposed recently for dynamic application reliability evaluation which integrates various factors that affect application failure. The existing component-based NEM relies on an exhaustive enumeration of all potential states of network components, which can lead to a computational bottleneck, especially when dealing with large networks. Therefore, to tackle this challenge, this paper presents a Network-gene-mutation-based NEM. The model introduces novel concepts of Network-cells and Network-genes inspired by the gene-cell-function model framework used in system biology to address complex disease problems. Network-cells are constructed according to the statistical classification of components. Network-genes are constructed by the average failure rate of components within a Network-cell. Dynamic network states are simulated by the Network-gene-mutation function of Network-cells instead of the failure and repair function of network components. Validation of our proposed model is performed through the comparison with benchmark models. The results demonstrate the validity of our proposed model in calculating dynamic application reliability. Besides, the comparison results with the component-based NEM also suggest that our proposed model reduces the time complexity of the algorithm from square order [Formula: see text] to constant order [Formula: see text] and improves the simulation efficiency by roughly 104. Applied to networks of varying scales, our proposed model proves to be an efficient method for calculating dynamic application reliability in large networks. In summary, this paper offers a promising solution to address the computational bottlenecks encountered in the component-based NEM when evaluating the reliability of dynamic applications.

Funder

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3