Genetic algorithm-aided reliability analysis

Author:

Harnpornchai N1

Affiliation:

1. College of Arts, Media, and Technology, Chiang Mai University, 239 Huay Kaew Road, Tambon Suthep, Amphoe Muang, Chiang Mai 50200, Thailand,

Abstract

A hybrid procedure consisting of the combination of a genetic algorithm (GA) and reliability analysis (referred to as GA-aided reliability analysis) is described, discussed, and summarized. Two classes of GA, namely simple GAs and multimodal GAs, are introduced to solve a number of important problems in reliability analysis. The problems cover the determination of the point of maximum likelihood (PML) in the failure domain, the computation of failure probability using the GA-determined PML, and the determination of multiple design points. The Monte Carlo simulation-based (MCS-based) method using the GA-determined PML is specifically implemented in the so-called importance sampling around PML (ISPML). The application of the GA-based approach to several problems is then demonstrated via numerical examples. With the aid of GAs, an accurate reliability analysis can be achieved even if there is no information about either the geometry of the limit state surfaces or the total number of crucial likelihood points. In addition, GAs significantly improve the computational efficiency and increase the potential of rare event analysis under the condition of limited computational resources. The implementation of the GA-based approaches is straightforward due to their algorithmic simplicity.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Nikaido Isoda-Based Hybrid Genetic Algorithm and Relaxation Method for Finding Nash Equilibrium;Mathematics;2021-12-27

2. Advanced time-dependent reliability analysis based on adaptive sampling region with Kriging model;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2020-03-04

3. Dynamic reliability analysis for structure with temporal and spatial multi-parameter;Proceedings of the Institution of Mechanical Engineers, Part O: Journal of Risk and Reliability;2019-06-10

4. Optimal Outpatient Appointment System with Uncertain Parameters Using Adaptive-Penalty Genetic Algorithm;Journal of Advanced Computational Intelligence and Intelligent Informatics;2015-09-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3