Bayesian Evidence Synthesis and the quantification of uncertainty in a Monte Carlo simulation

Author:

Sahlin Ullrika1,Jiang Yf1

Affiliation:

1. Centre for Environmental and Climate Research, Lund University, Lund, Sweden

Abstract

Monte Carlo simulation is a useful technique to propagate uncertainty through a quantitative model, but that is all. When the quantitative modelling is used to support decision-making, a Monte Carlo simulation must be complemented by a conceptual framework that assigns a meaningful interpretation of uncertainty in output. Depending on how the assessor or decision maker choose to perceive risk, the interpretation of uncertainty and the way uncertainty ought to be treated and assigned to input variables in a Monte Carlo simulation will differ. Bayesian Evidence Synthesis is a framework for model calibration and quantitative modelling which has originated from complex meta-analysis in medical decision-making that conceptually can frame a Monte Carlo simulation. We ask under what perspectives on risk that Bayesian Evidence Synthesis is a suitable framework. The discussion is illustrated by Bayesian Evidence Synthesis applied on a population viability analysis used in ecological risk assessment and a reliability analysis of a repairable system informed by multiple sources of evidence. We conclude that Bayesian Evidence Synthesis can conceptually frame a Monte Carlo simulation under a Bayesian perspective on risk. It can also frame an assessment under a general perspective of risk since Bayesian Evidence Synthesis provide principles of predictive inference that constitute an unbroken link between evidence and assessment output that open up for uncertainty quantified taking qualitative aspects of knowledge into account.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Reference29 articles.

1. Vose D. Risk analysis: a quantitative guide. 3rd ed.Chichester; Hoboken, NJ: Wiley, 2008, p.xiv, 735 pp.

2. Integrating QRA and SRA Methods Within a Bayesian Framework When Calculating Risk in Marine Operations: Two Examples

3. Implementing the Bayesian paradigm in risk analysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Multiple-point geostatistical simulation based on conditional conduction probability;Stochastic Environmental Research and Risk Assessment;2021-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3