Integrated availability importance measure for multi-state complex systems analysis

Author:

Dongwei Gu1ORCID,Yuhong Zhong2,Yanjuan Hu1,Guang Chen1,Zhixin Wang3,Nianhuan Li1

Affiliation:

1. School of Mechatronic Engineering, Changchun University of Technology, Changchun, China

2. StarPower Microelectronics Co., Ltd., Jiaxing, China

3. Jilin Province Product Quality Supervision and Inspection Institute, Changchun, China

Abstract

As an important tool to evaluate the key components of the multi-state system, the importance degree is essential in the system reliability design stage, to provide the basis for the system reliability improvement and maintenance. To accurately improve the reliability of the system, this paper provides an importance measure analysis method that comprehensively considers the state and maintenance effects. To measure the impact of components on the system more comprehensively, this paper proposes an Integrated Availability Importance Measure (IAIM) to evaluate the relative importance of components by combining component state probability, state transition rate, repair rate, and state repair transition rate and considering the impact of component reliability and maintainability on the performance of multi-state systems. Considering the randomness of system operation, a Monte Carlo simulation based IAIM analysis method for a multi-state system was developed. Taking the series system and the hybrid system as examples, the IAIM of the component is simulated and analyzed. Comparing IAIM with Integrated Importance Measure (IIM) and performance Utility Importance measure (UI), among them, UI considers the impact of the state on performance, while IIM considers state transition on the basis of UI, but does not consider the impact of maintenance. IAIM is more comprehensive than UI and IAIM. It can be seen that IAIM is different from importance measures based on reliability. This is because the IAIM fully examines the impact of component reliability and maintainability on multi-state systems. The IAIM improves the traditional shortcomings of only considering component reliability, and provides a more comprehensive way to evaluate the system.

Funder

Project of Jilin Provincial Science and Technology Department : Importance Measure of Multi-state Complex System for the Reliability Design of Manufacturing System.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3