An improved active Kriging method for reliability analysis combining expected improvement and U learning functions

Author:

Wang Lingjie1ORCID,Chen Yuqi2

Affiliation:

1. College of Animal Veterinary Medicine, Yunnan Agricultural University, Kunming, Yunnan, China

2. Dianchi College of Yunnan University, Kunming, Yunnan, China

Abstract

The reliability assessment of structures with multiple failure modes and small failure probability is challenging due to the time-consuming simulations required. Active learning Kriging methods for structural reliability with multiple failure modes have shown high computational efficiency and accuracy. However, selecting the appropriate sample and its failure mode to update the Kriging models remains a key problem. In this paper, we propose a new learning function and stopping criterion to further improve the efficiency of structural system reliability analysis. Firstly, we propose a new learning function that combines the expected improvement function and the U learning function. This function selects the most suitable samples, balancing the degree of expected improvement of samples to the limit state surface and the degree of misclassification probability of samples. Secondly, we propose a new stopping criterion that considers both the accurate construction of limit state surfaces and the probability of accurately predicting the signs of samples. This criterion avoids premature or late termination of the active learning process. Thirdly, the sequential MCS simulation method is employed in the active learning process to efficiently evaluate small failure probability problems. By analyzing four examples, we verify the accuracy and efficiency of the proposed structural reliability analysis method.

Publisher

SAGE Publications

Subject

Safety, Risk, Reliability and Quality

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3