Affiliation:
1. Department of Industrial & Manufacturing Engineering, North Dakota State University, Fargo, ND, USA
2. Facultad de Ciencias Administrativas, Escuela Politécnica Nacional, Ecuador
Abstract
Estimating the all-terminal network reliability by using artificial neural networks (ANNs) has emerged as a promissory alternative to classical exact NP-hard algorithms. Approaches based on traditional ANNs have usually considered the network reliability upper bound as part of the inputs, which implies additional time-consuming calculations during both training and testing phases. This paper proposes the use of Convolutional Neural Networks (CNNs), without the reliability upper-bound as an input, to address the all-terminal network reliability estimation problem. The present study introduces a multidimensional matrix format to embed the topological and link reliability information of networks. The unique contribution of this article is the method to capture the topology of a network in terms of its adjacency matrix, link reliability, and topological attributes providing a novel use of CNN beyond image classification. Since CNNs have been successful for image classification, appropriate modifications are needed and introduced to use them in the estimation of network reliability. A regression output layer is proposed, preceded by a sigmoid layer to achieve predictions within the range of reliability characteristic, a feature that some previous ANN-based works lack. Several training parameters together with a filter multiplier (CNN architecture parameter) were investigated. The actual values and the ones predicted with the best trained CNN were compared in the light of RMSE (0.04406) and p-value (0.3) showing non-significant difference. This study provides evidence supporting the hypothesis that the network reliability can be estimated by CNNs from its topology and link reliability information, embedded as an image-like multidimensional matrix. Another important result of the proposed approach is the significant reduction in computational time. An average of 1.18 ms/network was achieved by the CNN, whereas backtracking exact algorithm took around 500 s/network.
Subject
Safety, Risk, Reliability and Quality
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献