Political affiliation moderates subjective interpretations of COVID-19 graphs

Author:

Ericson Jonathan D1ORCID,Albert William S1,Duane Ja-Nae1

Affiliation:

1. Bentley University, Waltham, USA

Abstract

We examined the relationship between political affiliation, perceptual (percentage, slope) estimates, and subjective judgements of disease prevalence and mortality across three chart types. An online survey (N = 787) exposed separate groups of participants to charts displaying (a) COVID-19 data or (b) COVID-19 data labeled ‘Influenza (Flu)’. Block 1 examined responses to cross-sectional mortality data (bar graphs, treemaps); results revealed that perceptual estimates comparing mortality in two countries were similar across political affiliations and chart types (all ps > .05), while subjective judgements revealed a disease x political party interaction ( p < .05). Although Democrats and Republicans provided similar proportion estimates, Democrats interpreted mortality to be higher than Republicans; Democrats also interpreted mortality to be higher for COVID-19 than Influenza. Block 2 examined responses to time series (line graphs); Democrats and Republicans estimated greater slopes for COVID-19 trend lines than Influenza lines ( p < .001); subjective judgements revealed a disease x political party interaction ( p < .05). Democrats and Republicans indicated similar subjective rates of change for COVID-19 trends, and Democrats indicated lower subjective rates of change for Influenza than in any other condition. Thus, while Democrats and Republicans saw the graphs similarly in terms of percentages and line slopes, their subjective interpretations diverged. While we may see graphs of infectious disease data similarly from a purely mathematical or geometric perspective, our political affiliations may moderate how we subjectively interpret the data.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems and Management,Computer Science Applications,Communication,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3