A patient-specific fluid–structure interaction model of the cerebrovascular damage in relation to traumatic brain injury

Author:

Razaghi Reza1,Biglari Hasan1,Karimi Alireza2ORCID

Affiliation:

1. Department of Mechanical Engineering, University of Tabriz, Tabriz, Iran

2. Department of Mechanical Engineering, Kyushu University, Fukuoka, Japan

Abstract

Background There is a lack of knowledge on the magnitudes of the biomechanical stresses and deformations occurring in the cerebral arterial wall after traumatic brain injury (TBI). Experimental techniques are unable to calculate the stresses and deformations in the cerebral arterial wall after TBI; therefore, the application of numerical simulations, such as finite element modeling, is preferred. Methods This study was aimed to calculate the stresses and deformations as well as the alteration in the pressure and velocity of the blood in the cerebrovascular artery using a fluid–structure interaction model. Results The results revealed considerable increase in the pressure and velocity of the blood which might lead to cerebrovascular damage followed by hemorrhage. The arterial wall showed the highest deformation of 0.047 mm in the X direction which was higher than that in the Y (0.035–0.050 mm) and Z (0.019–0.030 mm) directions. Conclusions These results have implications not only for the understanding of the stresses and deformations in the cerebral artery because of TBI, but also for providing a comprehensive knowledge for biomechanical and medical experts in regard to thresholds of cerebrovascular damage for use in establishing preventive and/or treatment methods.

Publisher

SAGE Publications

Subject

Critical Care and Intensive Care Medicine,Emergency Medicine,Surgery

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3