Transgenic Mouse Models

Author:

Nishino Tomoya1,Ni Jie2,Devuyst Olivier1

Affiliation:

1. Division of Nephrology, Université catholique de Louvain Medical School, Brussels, Belgium

2. Division of Nephrology, First Affiliated Hospital of Harbin Medical University, Harbin, China

Abstract

The development of peritoneal dialysis has been paralleled by a growing interest in establishing suitable experimental models to better understand the functional and structural processes operating in the peritoneal membrane. Thus far, most investigations have been performed in rat and rabbit models, with mechanistic insights essentially based on intervention studies using pharmacological agents, blocking antibodies, or transient expression systems. Since the body size of a species is no longer a limiting factor in the performance of in vivo studies related to peritoneal dialysis, it has been considered that mice, particularly once they have been genetically modified, could provide an attractive tool to investigate the molecular mechanisms operating in the peritoneal membrane. The purpose of this review is to illustrate how investigators in peritoneal dialysis research, catching up with other fields of biomedical research, are increasingly taking advantage of mouse models to provide direct evidence of basic mechanisms involved in the major complications of peritoneal dialysis.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3