Affiliation:
1. Divisions of Baxter Novum and Renal Medicine, Department of Clinical Science, Karolinska Institute, Huddinge University Hospital, Stockholm, Sweden
Abstract
Objective To study peritoneal fluid and solute transport characteristics using different polyglucose solutions with and without the addition of glucose. Design Thirty-one rats were divided into three groups. A 4-hour dwell study with frequent dialysate and blood samples was performed in each rat using 25 mL of 7.5% polyglucose solution (PG, n = 11),7.5% polyglucose + 0.35% glucose solution (PG1, n = 12), or 3.75% polyglucose + 1.93% glucose solution (PG2, n = 8). Radiolabeled human albumin (RISA) was added to the solutions as an intraperitoneal volume (IPV) marker. In addition, polyglucose degradation was evaluated ex vivo over 24 hours. Experimental Animals Thirty-one male Sprague Dawley rats (300 g) were used. Main Outcome Measures Fluid and solute (glucose, urea, sodium, potassium, and total protein) transport characteristics as well as changes in dialysate osmolality were evaluated. Results The IPV was higher in the PG1 and PG2 groups than in the PG group during the first 2 hours of the dwell. The IPV, in fact, decreased during the first hour of the dwell in the PG group. However, the net ultrafiltration at 4 hours tended to be lower in the PG2 (3.2 ± 1.5 mL) group compared to the PG (5.1 ± 2.3 mL) and the PG1 groups (5.2 ± 2.1 mL) (p = 0.07), and no significant difference was found between the PG and PG1 groups. Adding glucose to the PG solution increased the RISA elimination rate (KE, representing the fluid absorption rate from the peritoneal cavity): 25.5 ± 8.2, 37.5 ± 12.2, and 42.5 ± 8.9 μL/ min for the PG, PG1, and the PG2 group, respectively, p < 0.01. Dialysate osmolality (Dos) increased with the dwell time in the PG and PG1 groups but decreased in the PG2 group. The increase in Dos was partially due to the degradation of glucose polymer, which was supported by the marked increase in osmolality over 24 hours of incubation of PG solution with peritoneal fluid, ex vivo. The diffusive mass transport coefficient for the investigated solutes did not differ among the three groups (except for glucose, which was significantly lower in the PG group). The sieving coefficient for sodium was significantly higher in the PG group compared to the PG1 group (p < 0.05). Conclusion Our results suggest that, although there was an initial decrease in the intraperitoneal dialysate volume, significant amounts of fluid can be removed by polyglucose solution during a single 4-hour dwell in rats, despite the low osmolality of the solution. The positive fluid removal induced by the PG solution is partially due to the lower fluid absorption rate associated with this solution and may, to some extent, also be due to the degradation of glucose polymer within the peritoneal cavity, resulting in increased dialysate osmolality. The addition of glucose to the polyglucose solution does not seem to improve ultrafiltration in a 4-hour dwell in the rat model. However, the peritoneal fluid absorption rate may be increased, and peritoneal transport of glucose and sodium may be altered, by adding glucose to the polyglucose solution.
Subject
Nephrology,General Medicine
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献