Temperature: The Single Most Important Factor for Degradation of Glucose Fluids during Storage

Author:

Kjellstrand Per1,Erixon Martin1,Wieslander Anders1,Lindén Torbjörn1,Martinson Evi1

Affiliation:

1. Gambro AB, Lund, Sweden

Abstract

ObjectiveBioincompatible glucose degradation products (GDPs) develop during heat sterilization of peritoneal dialysis (PD) fluids. However, degradation may also take place during storage. Consequently, storage may add to the bioincompatibility caused by heat sterilization. The aim of the present study was to investigate how different factors such as the sterilization procedure, pH, glucose concentration, and temperature influence GDP production during storage.DesignDegradation in glucose solutions was followed by pH and UV absorbance at 228 nm and 284 nm over 2 years of storage. Different sterilization times, storage temperatures, pH, and glucose concentrations were included in the study. Peritoneal dialysis fluids were also used in the experiment. Bioincompatibility was estimated through inhibition of cell growth in L-929 fibroblasts, and GDPs through UV absorption and liquid chromatography.ResultsThe most important factor determining the rate of GDP production during storage was temperature. The GDPs created by heat sterilization promoted further degradation of glucose during subsequent storage. A pH of around 3.2 protected glucose from degradation during both heat sterilization and storage. At a storage temperature of 20°C and a pH of 3.2, degradation was almost negligible. Heat sterilization produced considerable amounts of GDPs absorbing at 228 nm. During initial storage, these 228 nm-absorbing GDPs almost disappeared. After reaching a nadir, absorbance at 228 nm again started to increase. Contrary to this, absorbance at 284 nm [caused mainly by 5-hydroxymethyl-2-furaldehyde (5-HMF)] increased during the whole storage period. After 2 years at 40°C, the concentrations of GDPs produced during storage were of the same magnitude as those caused by heat sterilization. Inhibition of cell growth of L-929 fibroblasts correlated well with the part of the absorbance at 228 nm not caused by 5-HMF in glucose solutions that were heat sterilized under a wide range of conditions. This part of 228 nm absorbance (denoted 228corr) was caused almost entirely by 3,4-dideoxyglucosone-3-ene (3,4-DGE).ConclusionsTemperature is the single most important factor for glucose degradation during storage. The concentrations of bioincompatible GDPs produced may, under improper conditions, be as high as those produced during sterilization. High concentrations of glucose and low pH protect glucose from being degraded during both sterilization and storage. A good estimate of 3,4-DGE concentration in the fluids can be obtained correcting the UV absorbance at 228 nm for the influence from 5-HMF (and, when appropriate, for lactate). The 228corrmay thus be used as a simple quality control for the fluids.

Publisher

SAGE Publications

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3