Coronary intravascular lithotripsy in contemporary practice: challenges and opportunities in coronary intervention

Author:

Gupta Ankush1ORCID,Shrivastava Abhinav2,Dugal Jaskaran Singh3,Chhikara Sanya4,Vijayvergiya Rajesh5,Singh Navreet6,Mehta Ajit Chandrakant3,Mahesh Nalin Kumar7,Swamy Ajay8

Affiliation:

1. Professor of Medicine & Interventional Cardiologist, Department of Cardiology, Army Institute of Cardio Thoracic Sciences, Golibar Maidan, Pune 411040, India

2. Department of Cardiology, Fortis Hospital, Kangra, India

3. Department of Cardiology, Jehangir Hospital, Pune, India

4. Department of Medicine, Jacobi Medical Center, Bronx, NY, USA

5. Department of Cardiology, Advanced Cardiac Centre, PGIMER, Chandigarh, India

6. Department of Cardiology, Army Institute of Cardio Thoracic Sciences, Pune, India

7. Department of Cardiology, St. Gregorios Medical Mission Hospital, Parumala, India

8. Department of Cardiology, KIMS Hospitals Group, Secunderabad, India

Abstract

Percutaneous coronary intervention (PCI) of calcified coronary arteries is associated with poor outcomes. Poorly modified calcified lesion hinders the stent delivery, disrupts drug-carrying polymer, impairs drug elution kinetics and results in under-expanded stent (UES). UES is the most common cause of acute stent thrombosis and in-stent restenosis after PCI of calcified lesions. Angiography has poor sensitivity for recognition and quantification of coronary calcium, thereby mandating the use of intravascular imaging. Intravascular imaging, like intravascular ultrasound and optical coherence tomography, has the potential to accurately identify and quantify the coronary calcium and to guide appropriate modification device before stent placement. Available options for the modification of calcified plaque include modified balloons (cutting balloon, scoring balloon and high-pressure balloon), atherectomy devices (rotational atherectomy and orbital atherectomy) and laser atherectomy. Coronary intravascular lithotripsy (IVL) is the newest addition to the tool box for calcified plaque modification. It produces the acoustic shockwaves, which interact with the coronary calcium to cause multiplanar fractures. These calcium fractures increase the vessel compliance and result in desirable minimum stent areas. Coronary IVL has established its safety and efficacy for calcified lesion in series of Disrupt CAD trials. Its advantages over atherectomy devices include ease of use on workhorse wire, ability to modify deep calcium, no debris embolization causing slow flow or no-flow and minimal thermal injury. It is showing promising results in modification of difficult calcified lesion subsets such as calcified nodule, calcified left main bifurcation lesions and chronic total occlusion. In this review, authors will summarize the mechanism of action for IVL, its role in contemporary practice, evidence available for its use, its advantages over atherectomy devices and its imaging insight in different calcified lesion scenarios.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3