Assessing the representativeness of cluster randomized trials: Evidence from two large pragmatic trials in United States nursing homes

Author:

Joyce Nina R12ORCID,Robertson Sarah E345,McCreedy Ellen23,Ogarek Jessica23,Davidson Edward H6,Mor Vincent23,Gravenstein Stefan237,Dahabreh Issa J458

Affiliation:

1. Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA

2. Center for Gerontology and Health Care Research, Brown University School of Public Health, Providence, RI, USA

3. Department of Health Services Policy and Practice, Brown University School of Public Health, Providence, RI, USA

4. CAUSALab, Harvard T.H. Chan School of Public Health, Boston, MA, USA

5. Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA

6. Insight Therapeutics, LLC, Norfolk, VA, USA

7. Warren Alpert Medical School of Brown University, Providence, RI, USA

8. Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA

Abstract

Background/Aims When the randomized clusters in a cluster randomized trial are selected based on characteristics that influence treatment effectiveness, results from the trial may not be directly applicable to the target population. We used data from two large nursing home–based pragmatic cluster randomized trials to compare nursing home and resident characteristics in randomized facilities to eligible non-randomized and ineligible facilities. Methods We linked data from the high-dose influenza vaccine trial and the Music & Memory Pragmatic TRIal for Nursing Home Residents with ALzheimer’s Disease (METRICaL) to nursing home assessments and Medicare fee-for-service claims. The target population for the high-dose trial comprised Medicare-certified nursing homes; the target population for the METRICaL trial comprised nursing homes in one of four US-based nursing home chains. We used standardized mean differences to compare facility and individual characteristics across the three groups and logistic regression to model the probability of nursing home trial participation. Results In the high-dose trial, 4476 (29%) of the 15,502 nursing homes in the target population were eligible for the trial, of which 818 (18%) were randomized. Of the 1,361,122 residents, 91,179 (6.7%) were residents of randomized facilities, 463,703 (34.0%) of eligible non-randomized facilities, and 806,205 (59.3%) of ineligible facilities. In the METRICaL trial, 160 (59%) of the 270 nursing homes in the target population were eligible for the trial, of which 80 (50%) were randomized. Of the 20,262 residents, 973 (34.4%) were residents of randomized facilities, 7431 (36.7%) of eligible non-randomized facilities, and 5858 (28.9%) of ineligible facilities. In the high-dose trial, randomized facilities differed from eligible non-randomized and ineligible facilities by the number of beds (132.5 vs 145.9 and 91.9, respectively), for-profit status (91.8% vs 66.8% and 68.8%), belonging to a nursing home chain (85.8% vs 49.9% and 54.7%), and presence of a special care unit (19.8% vs 25.9% and 14.4%). In the METRICaL trial randomized facilities differed from eligible non-randomized and ineligible facilities by the number of beds (103.7 vs 110.5 and 67.0), resource-poor status (4.6% vs 10.0% and 18.8%), and presence of a special care unit (26.3% vs 33.8% and 10.9%). In both trials, the characteristics of residents in randomized facilities were similar across the three groups. Conclusion In both trials, facility-level characteristics of randomized nursing homes differed considerably from those of eligible non-randomized and ineligible facilities, while there was little difference in resident-level characteristics across the three groups. Investigators should assess the characteristics of clusters that participate in cluster randomized trials, not just the individuals within the clusters, when examining the applicability of trial results beyond participating clusters.

Funder

Agency for Healthcare Research and Quality

Sanofi

National Institute on Aging

Patient-Centered Outcomes Research Institute

U.S. National Library of Medicine

Publisher

SAGE Publications

Subject

Pharmacology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3