Using multistate models with clinical trial data for a deeper understanding of complex disease processes

Author:

Therneau Terry M1,Ou Fang-Shu1ORCID

Affiliation:

1. Division of Clinical Trials and Biostatistics, Mayo Clinic, Rochester, MN, USA

Abstract

A clinical trial represents a large commitment from all individuals involved and a huge financial obligation given its high cost; therefore, it is wise to make the most of all collected data by learning as much as possible. A multistate model is a generalized framework to describe longitudinal events; multistate hazards models can treat multiple intermediate/final clinical endpoints as outcomes and estimate the impact of covariates simultaneously. Proportional hazards models are fitted (one per transition), which can be used to calculate the absolute risks, that is, the probability of being in a state at a given time, the expected number of visits to a state, and the expected amount of time spent in a state. Three publicly available clinical trial datasets, colon, myeloid, and rhDNase, in the survival package in R were used to showcase the utility of multistate hazards models. In the colon dataset, a very well-known and well-used dataset, we found that the levamisole+fluorouracil treatment extended time in the recurrence-free state more than it extended overall survival, which resulted in less time in the recurrence state, an example of the classic “compression of morbidity.” In the myeloid dataset, we found that complete response (CR) is durable, patients who received treatment B have longer sojourn time in CR than patients who received treatment A, while the mutation status does not impact the transition rate to CR but is highly influential on the sojourn time in CR. We also found that more patients in treatment A received transplants without CR, and more patients in treatment B received transplants after CR. In addition, the mutation status is highly influential on the CR to transplant transition rate. The observations that we made on these three datasets would not be possible without multistate models. We want to encourage readers to spend more time to look deeper into clinical trial data. It has a lot more to offer than a simple yes/no answer if only we, the statisticians, are willing to look for it.

Funder

Daniel J. Sargent, Ph.D., Career Development Award in Cancer Research

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3