Affiliation:
1. Department of Biostatistics, University of California, Los Angeles, Los Angeles, CA, USA
Abstract
Background/Aims Clinical trials for Alzheimer’s disease have been aimed primarily at persons who have cognitive symptoms at enrollment. However, researchers are now recognizing that the pathophysiological process of Alzheimer’s disease begins years, if not decades, prior to the onset of clinical symptoms. Successful intervention may require intervening early in the disease process. Critical issues arise in designing clinical trials for primary and secondary prevention of Alzheimer’s disease including determination of sample sizes and follow-up duration. We address a number of these issues through application of a unifying multistate model for the preclinical course of Alzheimer’s disease. A multistate model allows us to specify at which points during the long disease process the intervention exerts its effects. Methods We used a nonhomogeneous Markov multistate model for the progression of Alzheimer’s disease through preclinical disease states defined by biomarkers, mild cognitive impairment and Alzheimer’s disease dementia. We used transition probabilities based on several published cohort studies. Sample size methods were developed that account for factors including the initial preclinical disease state of trial participants, the primary endpoint, age-dependent transition and mortality rates and specifications of which transition rates are the targets of the intervention. Results We find that Alzheimer’s disease prevention trials with a clinical primary endpoint of mild cognitive impairment or Alzheimer’s disease dementia will require sample sizes of the order many thousands of individuals with at least 5 years of follow-up, which is larger than most Alzheimer’s disease therapeutic trials conducted to date. The reasons for the large trial sizes include the long and variable preclinical period that spans decades, high rates of attrition among elderly populations due to mortality and losses to follow-up and potential selection effects, whereby healthier subjects enroll in prevention trials. A web application is available to perform sample size calculations using the methods reported here. Conclusion Sample sizes based on multistate models can account for the points in the disease process when interventions exert their effects and may lead to more accurate sample size determinations. We will need innovative strategies to help design Alzheimer’s disease prevention trials with feasible sample size requirements and durations of follow-up.
Funder
National Institute on Aging
Subject
Pharmacology,General Medicine
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献