Morphometric Study of Fetal Brain Transplants in the Insular Cortex and NGF Effects on Neuronal and Glial Development

Author:

Díaz-Cintra S.1,Rivas P.2,Cintra L.1,Aguilar A.1,Gutiérrez G.1,Pérez E.1,Escobar M.3,Bermúdez-Rattoni F.3

Affiliation:

1. Centro de Neurobiología, U.N.A.M., Ciudad Universitaria, Apartado Postal No. 70228, México, D.F.

2. Facultad de Ciencias, U.N.A.M., Ciudad Universitaria, Apartado Postal No. 70228, México, D.F.

3. Instituto de Fisiologia Celular, U.N.A.M., Ciudad Universitaria, Apartado Postal No. 70228, México, D.F.

Abstract

Homotopic grafts supplemented with nerve growth factor (NGF) speed the recovery from learning deficits observed following electrolytic lesions of the insular cortex in rats. NGF also reduces the time in which the activity of choline acetyltransferase (ChAT) is first detected inside the graft by histochemical techniques. It is not known whether this behavioral and biochemical recovery correlates with an advanced maturation of the cellular elements within the graft, presumably induced by NGF. To investigate the degree of maturation of neurons, glial cells and blood vessels in NGF-supplemented grafts, adult rats were lesioned electrolytically in the insular cortex, and homotopic embryonic grafts (E16) with or without NGF supplementation were transplanted into the lesion. Fifteen days post grafting, the rats were perfused and the brains stained using silver impregnation techniques. Our results showed that neuronal maturation, as evaluated through several morphometric parameters, was advanced in NGF-supplemented grafts when compared with other experimental groups. Furthermore, grafts supplemented with NGF also showed significant increases in the number of neurons, oligodendrocytes, astrocytes and blood vessels. These observations indicated that the addition of NGF to insular cortex grafts promoted the maturation of neuronal and glial elements within the graft. They also support the possibility that the advanced morphological maturation of insular cortex grafts supplemented with NGF underlies the accelerated functional and biochemical recovery of animals with lesions of the insular cortex.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3