LncRNA FEZF1-AS1 Modulates Cancer Stem Cell Properties of Human Gastric Cancer Through miR-363-3p/HMGA2

Author:

Hui Yuanjian12,Yang Yan12,Li Deping3ORCID,Wang Juan4,Di Maojun1,Zhang Shichao5,Wang Shasha5

Affiliation:

1. Department of General Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan City, China

2. * Both the authors contributed equally to this article

3. Department of Gastroenterology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China

4. Department of Vasculocardiology, Taihe Hospital, Hubei University of Medicine, Shiyan City, China

5. Department of Pediatrics, Taihe Hospital, Hubei University of Medicine, Shiyan City, China

Abstract

Gastric cancer (GC) is a leading cause of cancer-related death with poor prognosis. Growing evidence has shown that long noncoding ribonucleic acid (lncRNA) FEZ family zinc finger 1 antisense RNA 1(FEZF1-AS1), an “oncogene,” regulates tumor progression and supports cancer stem cell. However, the tumorigenic mechanism of FEZF1-AS1 on gastric cancer stem cell (GCSC) is yet to be investigated. Here, we discovered that FEZF1-AS1 was upregulated in GC tissues and cell lines. Knockdown of FEZF1-AS1 inhibited sphere formation and decreased expression of stem factors and markers. Moreover, FEZF1-AS1 silence also suppressed cell proliferation, viability, invasion, and migration of GCSCs. MiR-363-3p is used as a target of FEZF1-AS1, because its expression was suppressed by FEZF1-AS1 in GCSCs. FEZF1-AS1 could sponge miR-363-3p and increased the expression of high-mobility group AT-hook 2 (HMGA2). The expression of FEZF1-AS1 and miR-363-3p, as well as that of miR-363-3p and HMGA2, was negatively correlated in GC tissues. Finally, FEZF1-AS1 contributed to promotion of GCSCs progression partially through inhibition of miR-363-3p. Subcutaneous xenotransplanted tumor model revealed that silence of FEZF1-AS1 suppressed in vivo tumorigenic ability of GSCS via downregulation of HMGA2. In general, our findings clarified the critical regulatory role of FEZF1-AS1/miR-363-3p/HMGA2 axis in GCSC progression, providing a potential therapeutic target for GC.

Funder

the Scientific and Technological Project of Shiyan City of Hubei Province in 2019

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3