Cell Transplantation for Myocardial Repair: An Experimental Approach

Author:

Marelli Daniel1,Desrosiers Carolyne1,El-Alfy Mohamed2,Kao Race L.3,Chiu Ray C.-J.1

Affiliation:

1. Departments of Surgery and McGill University, Montreal, Quebec, Canada

2. Departments of Anatomy, McGill University, Montreal, Quebec, Canada

3. Department of Surgery, East Tennessee State University, Johnson City, TN, USA

Abstract

Myocardium lacks the ability to regenerate following injury. This is in contrast to skeletal muscle (SKM), in which capacity for tissue repair is attributed to the presence of satellite cells. It was hypothesized that SKM satellite cells multiplied in vitro could be used to repair injured heart muscle. Fourteen dogs underwent explantation of the anterior tibialis muscle. Satellite cells were multiplied in vitro and their nuclei were labelled with tritiated thymidine 24 h prior to implantation. The same dogs were then subjected successfully to a myocardial injury by the application of a cryoprobe. The cells were suspended in serum-free growth medium and autotransplanted within the damaged muscle. Medium without cells was injected into an adjacent site to serve as a control. Endpoints comprised histology using standard stains as well as Masson trichrome (specific for connective tissue), and radioautography. In five dogs, satellite cell isolation, culture, and implantation were technically satisfactory. In three implanted dogs, specimens were taken within 6-8 wk. There were persistence of the implantation channels in the experimental sites when compared to the controls. Macroscopically, muscle tissue completely surrounded by scar tissue could be seen. Masson trichrome staining showed homogeneous scar in the control site, but not in the test site where a patch of muscle fibres containing intercalated discs (characteristic of myocardial tissue) was observed. In two other dogs, specimens were taken at 14 wk postimplantation. Muscle tissue could not be found. These preliminary results could be consistent with the hypothesis that SKM satellite cells can form neo-myocardium within an appropriate environment. Our specimens failed to demonstrate the presence of myocyte nuclei. It is therefore further hypothesized that in the late postoperative period, the muscle regenerate failed to survive.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

Cited by 153 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3