The Immunomodulatory Properties of Amniotic Cells

Author:

Magatti Marta1,Vertua Elsa1,Cargnoni Anna1,Silini Antonietta1,Parolini Ornella12

Affiliation:

1. Centro di Ricerca “E. Menni”, Fondazione Poliambulanza- Istituto Ospedaliero, Brescia, Italy

2. Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore Facoltà di Medicina e Chirurgia, Rome, Italy

Abstract

Among the many cell types useful in developing therapeutic treatments, human amniotic cells from placenta have been proposed as valid candidates. Both human amniotic epithelial and mesenchymal stromal cells, and the conditioned medium generated from their culture, exert multiple immunosuppressive activities. Indeed, they inhibit T and B cell proliferation, suppress inflammatory properties of monocytes, macrophages, dendritic cells, neutrophils, and natural killer cells, while promoting induction of cells with regulatory functions such as regulatory T cells and anti-inflammatory M2 macrophages. These properties have laid the foundation for their use for the treatment of inflammatory-based diseases, and encouraging results have been obtained in different preclinical disease models where exacerbated inflammation is present. Moreover, an immune-privileged status of amniotic cells has been often highlighted. However, even if long-term engraftment of amniotic cells has been reported into immunocompetent animals, only few cells survive after infusion. Furthermore, amniotic cells have been shown to be able to induce immune responses in vivo and, under specific culture conditions, they can stimulate T cell proliferation in vitro. Although immunosuppressive properties are a widely recognized characteristic of amniotic cells, immunogenic and stimulatory activities appear to be less reported, sporadic events. In order to improve therapeutic outcome, the mechanisms responsible for the suppressive versus stimulatory activity need to be carefully addressed. In this review, both the immunosuppressive and immunostimulatory activity of amniotic cells will be discussed.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3