The Potential Contribution of Rejection to Survival of Transplanted Human Islets

Author:

Swift S.M.1,Clayton H.A.1,London N.J.M.1,James R.F.L.1

Affiliation:

1. Department of Surgery, University of Leicester, Leicester, UK

Abstract

Clinical islet transplantation is potentially the treatment of choice for people with type I diabetes. Rates of insulin independence in islet transplant recipients are disappointingly low, and the relative contribution of the rejection response compared with the loss of islet function is still unclear. We have compared the mixed lymphocyte islet coculture (MLIC) with the mixed lymphocyte acinar cell coculture (MLAC) and the mixed lymphocyte response (MLR) as in vitro models of allograft rejection to MHC and tissue-specific antigens expressed by human islets and acinar cells. The reduced number of MHC class II antigen-positive cells in islets and acinar tissue compared to those in the stimulator lymphocyte population of the MLR, correlated with a reduced proliferative response in the MLIC and MLAC. Enhancement of MHC class II antigen expression by islets using TNFα and IFNγ did not increase their stimulatory capacity in the islet cocultures, which may have been due to a corresponding absence of B7 expression. The lack of T cell proliferation to acinar cells despite cytokine-induced enhancement of MHC class II expression and detectable B7 expression appeared to be due to the inhibitory effect of exocrine enzymes on lymphocyte proliferation. In conclusion, we suggest that a rejection response to islets and acinar tissue is possible due to the accompanying MHC class II-positive cells and that, in this model, islet and acinar-specific antigens do not significantly contribute to that response. Acinar cells may have the potential to stimulate lymphocytes directly, but this was not evident by proliferation in the MLAC. Rejection appears to contribute to the low survival rate of human islet allografts, but it is unlikely that this is the sole explanation, and other factors should be considered. © 1998 Elsevier Science Inc.

Publisher

SAGE Publications

Subject

Transplantation,Cell Biology,Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3