In vitro evaluation of cobalt oxide nanoparticle-induced toxicity

Author:

Abudayyak Mahmoud1,Gurkaynak Tuba Altincekic2,Özhan Gül1

Affiliation:

1. Department of Pharmaceutical Toxicology, Faculty of Pharmacy, Istanbul University, Beyazit, Istanbul, Turkey

2. Department of Chemical Engineering, Faculty of Engineering, Istanbul University, Avcilar, Istanbul, Turkey

Abstract

Cobalt oxide (Co3O4) nanoparticles have applications in nanomedicine and nanotechnology; therefore, any possible adverse effects require thorough investigation. The present study investigated the effects of Co3O4 nanoparticles on four different cell lines: liver, HepG2 hepatocellular carcinoma cells; lung, A549 lung carcinoma cells; gastrointestinal, Caco-2 colorectal adenocarcinoma cells; and nervous system, SH-SY5Y neuroblastoma cells. A difference was observed in cell sensitivity toward Co3O4 nanoparticles. Co3O4 nanoparticles were taken up by all the cell types. However, no cell death was observed in HepG2, Caco-2, or SH-SY5Y cells; only A549 cells showed cytotoxicity at relatively high exposure concentrations. Co3O4 nanoparticles did not induce DNA damage or apoptosis in the cell lines tested except in A549. Interestingly, Co3O4 nanoparticles induced cellular oxidative damage in all cell types except Caco-2, resulting in increased malondialdehyde and 8-hydroxydeoxyguanosine levels and decreased glutathione levels. According to our results, it could be indicated that high concentrations of Co3O4 nanoparticles affected the pulmonary system but were unlikely to affect the liver, nervous system, or gastrointestinal system. Co3O4 nanoparticles might be safely used for industrial, commercial, and nanomedical applications if dose rates are adjusted depending on the route of exposure. However, further in vivo and in vitro studies are required to confirm the safety of Co3O4 nanoparticles.

Funder

Bilimsel Aratirma Projeleri Birimi, Istanbul Üniversitesi

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3