Prediction of the skin sensitization potential of polyhexamethylene guanidine and triclosan and mixtures of these compounds with the excipient propylene glycol through the human Cell Line Activation Test

Author:

Yang SuJeong1,Heo Yong12ORCID,Gautam Ravi1,Lee JaeHee1,Maharjan Anju1,Jo JiHun1,Acharya Manju1,Kim ChangYul12,Kim HyoungAh3ORCID

Affiliation:

1. Department of Occupational Health, College of Bio-Medical Sciences, Daegu Catholic University, Gyeongbuk, Republic of Korea

2. Department of Toxicology, Graduate School of Daegu Catholic University, Gyeongbuk, Republic of Korea

3. Department of Preventive Medicine, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea

Abstract

Household products often contain an antimicrobial agent such as biocides, polyhexamethylene guanidine (PHMG), triclosan (TCS), and propylene glycol (PG) as an excipient to dissolve the active ingredients. The skin sensitization (SS) potentials of each of these substances or mixtures of PHMG or TCS with PG have not been investigated through in vitro alternative test methods. The in vitro alternative assay called human Cell Line Activation Test (h-CLAT) served to address these issues. The h-CLAT assay was conducted in accordance with OECD TG 442E. On three independent runs, all the three substances were predicted to be sensitizers according to the SS positivity with relative fluorescence intensity of CD86 ≥ 150% and/or CD54 ≥ 200% at any tested concentrations. Mixtures of PHMG or TCS with PG at ratios of 9:1, 4:1, or 1:4 weight/volume were all positive in terms of SS potential. Since humans can be occupationally or environmentally exposed to mixtures of excipients with active ingredients of biocides, the present study may give insights into further investigations of the SS potentials of various chemical mixtures.

Funder

the National Research Foundation of Korea

ministry of environment

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3