The simulation of the emission of iron fumes caused by shielded metal arc welding using a computational fluid dynamics method

Author:

Paridokht Fatemeh1,Soury Shiva2,Karimi Zeverdegani Sara1ORCID

Affiliation:

1. Department of Occupational Health and Safety Engineering, Student Research Committee, School of Health, Isfahan University of Medical Sciences, Isfahan , Iran

2. Department of Occupational Health Engineering, School of Health, Ilam University of Medical Science, Ilam, Iran

Abstract

Computational fluid dynamics (CFD) is an indispensable simulation tool for predicting the emission of pollutants in the work environment. Welding is one of the most common industrial processes that might expose the operators and surrounding workers to certain hazardous gaseous metal fumes. In the present study, we used computational fluid dynamics (CFD) methodology for simulating the emission of iron fumes from the shielded metal arc welding (SMAW) procedure. A galvanized steel chamber was fabricated to measure the pollutant concentration and identify the size of the fume created by the SMAW. Then, the emission of welding aerosol was simulated using a method of computational fluid-particle dynamics with the ANSYS 2020 R1 software. The highest amount of welding fumes concentration was related to iron fumes (i.e., 3045 μg/m3 with a diameter of 0.25 μm). The results of the current study indicated that the local exhaust and general ventilation system can prevent the spreading of welding fumes to the welder’s breathing zone and the surrounding environment. CFD was also found to be an efficient method for predicting the emission of the iron fumes created by SMAW as well as for selecting an appropriate ventilation system. However, further studies that take the modeling of welding-generated emission of additional metal particles and gases into account will need to be undertaken.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3