Protective effects of dietary omega-3 fatty acid supplementation on organophosphate poisoning

Author:

Avci Bahattin1,Bilge S. Sirri2,Arslan Gokhan3,Alici Omer4,Darakci Ozge5,Baratzada Turkhan1,Ciftcioglu Engin6,Yardan Turker7,Bozkurt Ayhan5

Affiliation:

1. Department of Biochemistry, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey

2. Department of Pharmacology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey

3. Department of Physiology, Faculty of Medicine, Cumhuriyet University, Sivas, Turkey

4. Department of Pathology, Faculty of Medicine, Gaziosmanpasa University, Tokat, Turkey

5. Department of Physiology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey

6. Department of Anatomy, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey

7. Department of Emergency Medicine, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Turkey

Abstract

In this study, we aimed to study the possible preventive effect of docosahexaenoic acid (DHA), a dietary omega-3 fatty acid, on toxicity caused by chlorpyrifos (CPF). Six groups of Sprague Dawley rats (200–250 g) consisting of equal numbers of males and females (n = 8) were assigned to study. The rats were orally given for 5 days. The control group was administered pure olive oil, which was the vehicle for CPF. The CPF challenge groups were administered oral physiological saline, pure olive oil, or DHA (50, 100 and 400 mg/kg dosages) for 5 days. The animals were weighed on the sixth day and then administered CPF (279 mg/kg, subcutaneously). The rats were weighed again 24 h following CPF administration. The body temperatures and locomotor activities of the rats were also measured. Blood samples, brain and liver tissues were collected for biochemical, histopathological and immunohistochemical examinations. A comparison with the control group demonstrated that CPF administration increased malondialdehyde (MDA) levels in blood, brain and liver, while it reduced catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) concentrations ( p < 0.05–0.001). Advanced oxidation protein products (AOPPs) increased only in the brain ( p < 0.001). DHA reduced these changes in MDA and AOPP values ( p < 0.05–0.001), while it increased CAT, SOD and GPx concentrations ( p < 0.05–0.001). Similarly, DHA prevented the decreases in body weight, body temperature and locomotor activities caused by CPF at 100 mg/kg and 400 mg/kg dosages ( p < 0.05–0.001). Similar to the physiological and biochemical changes, the histopathological damage scores, which increased with CPF ( p < 0.05–0.01), decreased at all three dosages of DHA ( p < 0.05–0.01). Our findings suggest that DHA, by supporting the antioxidant mechanism, reduces toxicity caused by CPF.

Publisher

SAGE Publications

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health,Toxicology

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3