Construction of a Risk Prediction Model for Hospital-Acquired Pulmonary Embolism in Hospitalized Patients

Author:

Hou Lengchen12,Hu Longjun12,Gao Wenxue1,Sheng Wenbo3,Hao Zedong3,Chen Yiwei3,Li Jiyu1ORCID

Affiliation:

1. Shanghai Tenth People's Hospital, Shanghai, China

2. *As co-first authors, the two authors have an equally important contribution to this research.

3. Shanghai Synyi Medical Technology Co., Ltd, Shanghai, China

Abstract

The purpose of this study is to establish a novel pulmonary embolism (PE) risk prediction model based on machine learning (ML) methods and to evaluate the predictive performance of the model and the contribution of variables to the predictive performance. We conducted a retrospective study at the Shanghai Tenth People's Hospital and collected the clinical data of in-patients that received pulmonary computed tomography imaging between January 1, 2014 and December 31, 2018. We trained several ML models, including logistic regression (LR), support vector machine (SVM), random forest (RF), and gradient boosting decision tree (GBDT), compared the models with representative baseline algorithms, and investigated their predictability and feature interpretation. A total of 3619 patients were included in the study. We discovered that the GBDT model demonstrated the best prediction with an area under the curve value of 0.799, whereas those of the RF, LR, and SVM models were 0.791, 0.716, and 0.743, respectively. The sensibilities of the GBDT, LR, RF, and SVM models were 63.9%, 68.1%, 71.5%, and 75%, respectively; the specificities were 81.1%, 66.1, 72.7%, and 65.1%, respectively; and the accuracies were 77.8%, 66.5%, 72.5%, and 67%, respectively. We discovered that the maximum D-dimer level contributed the most to the outcome prediction, followed by the extreme growth rate of the plasma fibrinogen level, in-hospital duration, and extreme growth rate of the D-dimer level. The study demonstrates the superiority of the GBDT model in predicting the risk of PE in hospitalized patients. However, in order to be applied in clinical practice and provide support for clinical decision-making, the predictive performance of the model needs to be prospectively verified.

Funder

the major project in intelligent healthcare of Shanghai Municipal Health and Family Planning commission

Publisher

SAGE Publications

Subject

Hematology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3