A practical method and its applications to prioritize volatile organic compounds emitted from building materials based on ventilation rate requirements and ozone-initiated reactions

Author:

Ye Wei12,Won Doyun3,Zhang Xu2

Affiliation:

1. State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, P. R. China

2. School of Mechanical Engineering, Tongji University, Shanghai, P. R. China

3. NRC Construction, National Research Council Canada, Ottawa, ON, Canada

Abstract

Volatile organic compounds emissions from building materials can be a major pollution source in low-occupant-density spaces. Composite-style indoor air quality references, which reflect the combined effects of multiple volatile organic compounds, can be used to determine ventilation rate requirements based on building material emissions. The lowest concentration of interest concept was adopted to implement the idea. Twenty-eight building materials selected from the National Research Council of Canada database were subjected to emission modelling, resulting in 101 volatile organic compounds as a starting volatile organic compound pool. A method was proposed to generate a volatile organic compound priority list that determines ventilation rate requirements while considering ozone-initiated reactions. Three priority lists were obtained based on three lowest concentration of interest schemes, i.e., AFSSET, AgBB and EU-LCI, with each consisting of 17–21 volatile organic compounds that were most likely to attribute to large ventilation rate requirements. Also, analyses of selected volatile organic compounds showed that the changes in the composition of the priority lists due to ozone-initiated reactions could be ignored at a typical indoor ozone concentration level. The application of priority lists was discussed for source control and air cleaning device testing. This paper provides a method to prioritize the chemicals based on ventilation rate requirements with a goal of developing volatile organic compound control strategies at building design stage.

Publisher

SAGE Publications

Subject

Public Health, Environmental and Occupational Health

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3