A Numerical and Experimental Study on Thermal Conductivity of Particle Filled Polymer Composites

Author:

Kumlutas Dilek1,Tavman Ismail H.1

Affiliation:

1. Dokuz Eylul University, Mechanical Engineering Department Bornova, Izmir 35100, Turkey

Abstract

In this study, thermal conductivity of particle filled polymer composites is investigated numerically and experimentally. In the numerical study, the finite-element program ANSYS is used to calculate the thermal conductivity of the composite by using the results of the thermal analysis. Three-dimensional models are used to simulate the microstructure of composite materials for various filler concentrations at various ratios of thermal conductivities of filler to matrix material. The models used to simulate particle filled composite materials are cubes in a cube lattice array and spheres in a cube lattice array. A modified hot wire method is used to measure the thermal conductivity of the composites consisting of a high-density polyethylene (HDPE) matrix filled with tin particles up to 16% by volume. The experimentally measured thermal conductivities are compared with numerically calculated ones by using the spheres in cube model and also with the already existing theoretical and empirical models. At low particle content, up to 10% of volume content of tin filler, numerical estimation and all other models except for the Cheng and Vachon model, predict well the thermal conductivity of the composite. For more heavily filled composites there is an exponential increase in thermal conductivity and most of the models fail to predict thermal conductivity in this region.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3