Mixing challenges for SiO2/polystyrene nanocomposites

Author:

Kourki Hajir1ORCID,Famili Mohammad Hossein Navid2,Mortezaei Mehrzad3,Malekipirbazari Milad4

Affiliation:

1. Polymer Engineering Group, Chemical Engineering Department, Graduate University of Advanced Technology, Kerman, Iran

2. Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran

3. Polymer Engineering Group, Composite Science and Technology Research Center, Tehran, Iran

4. Department of Industrial Engineering, Bilkent University, Ankara, Turkey

Abstract

Morphology of a nanocomposite, which has indisputable effects on its properties, is determined by its dynamic and thermodynamic conditions. While physical properties of the components of a nanocomposite as well as the interaction between them are the parameters controlling the morphology thermodynamically, their dynamic condition is related to the issues like intensity of mixing and geometry of mixer. In this research, we investigate the mixing process of solution casting method by studying the effects of mixing intensity on the dynamics of the particle structure and hereby its morphology using sedimentation test. In these experiments, mixing is performed at various durations, input energies, and energy types for suspensions containing different particle sizes and concentrations as well as diverse polymer concentrations. We found that increasing mixing time and input energy along with using ultrasonic wave decrease the size of aggregates. Sedimentation test revealed improvements of dispersion and distribution states of suspension by using ultrasonic waves and high shear mixing, respectively. Finally, particle–particle interaction data show increase in the probability of restructuring after mixing with reduction in particle size and increase in particle volume fraction.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3