Physico-mechanical, thermal, and tribological studies of polytetrafluoroethylene-filled polyoxymethylene/silicone composites

Author:

Gowda MR Shankare1,Hemavathi AB2ORCID,Srinivas S2,Santhosh G3,Siddaramaiah Hatna2

Affiliation:

1. Department of Mechanical Engineering, Rajeev Institute of Technology, Hassan, Karnataka, India

2. Department of Polymer Science and Technology, Sri Jayachamarajendra College of Engineering, Mysuru, Karnataka, India

3. Department of Mechanical Engineering, NMAM Institute of Technology, Nitte, Karnataka, India

Abstract

Polyoxymethylene (POM)-based composites with polytetrafluoroethylene (PTFE) filler and silicone gum have been prepared by melt extrusion to enhance the wear resistance and friction lubrication of POM without compromising the other desired properties such as modulus, toughness/impact strength, notch insensitivity, and thermal stability. The compounded material was injection molded to prepare test specimens, and their physico-mechanical properties were evaluated. In addition, thermal and tribological characteristics of the composites were also studied. The addition of silicone into POM/PTFE composites could enhance the formation of stable transfer film on the mating surface during sliding contact, thus improving the friction and wear performance, as silicone forms synergistic mixture with PTFE. It was found that the tensile, flexural, and notched impact strength remained almost constant for all the formulations. The use of PTFE improved the unnotched impact strength (from 35.5 to 42.9 kJ m−2). The toughening effect can be attributed to the dissipation of impact energy through soft PTFE and ductile silicone phase. Differential scanning calorimeter results revealed that there are no negative effects on POM crystallinity due to the presence of PTFE and silicone. The wear behavior of composites has been investigated under dry sliding conditions at different normal loads and sliding velocities at room temperature. The POM/PTFE/silicone (90/8/2 wt/wt%) formulation exhibits better wear-resistant behavior in the present study.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3