Enhanced properties of poly(lactic acid) by concurrent addition of organo-modified Mg-Al layered double hydroxide (LDH) and triethyl citrate

Author:

Monshizadeh Mehrnoush1,Seifi Sajad2,Hejazi Iman3,Seyfi Javad2ORCID,Khonakdar Hossein Ali45

Affiliation:

1. Department of Chemical and Polymer Engineering, Faculty of Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran

2. Department of Chemical Engineering, Shahrood Branch, Islamic Azad University, Shahrood, Iran

3. Applied Science Nano Research Group, ASNARKA, Tehran, Iran

4. Department of Polymer Processing, Iran Polymer and Petrochemical Institute, Tehran, Iran

5. Leibniz-Institut fur Polymerforschung Dresden e. V., Dresden, Germany

Abstract

Synergistic effects of organo-modified Mg-Al layered double hydroxide (LDH) and triethyl citrate (TEC) on the properties of poly(lactic acid) (PLA) were demonstrated. PLA/LDH nanocomposites in the absence and presence of TEC were fabricated via solution casting technique. Morphological analysis revealed that as the LDH concentration increases, the number of aggregations is also increased; however, introduction of TEC considerably enhanced the dispersion quality of LDHs. Differential scanning calorimetry results showed that the addition of LDH and TEC had no significant influence on the crystallinity of nanocomposites obtained from solution casting. In contrast, once the samples were cooled from melt, the concurrent use of LDH and TEC led to a dramatic enhancement in the crystallinity of PLA ( X c = 55.5%). Moreover, the LDH nanoparticles counterbalanced the adverse effects of plasticization by TEC leading to enhanced toughness of the final nanocomposites. LDH had also a positive influence on thermal stability of PLA, indicating the heat-insulating role of LDH particles. In conclusion, the concurrent use of LDH and TEC could extend the applicability of PLA especially in food packaging applications.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3