Mechanical, thermal and physico-chemical behavior of virgin and hydrothermally aged polymeric pipes

Author:

Jemii Houcine1ORCID,Hammiche Dalila2ORCID,Boubakri Abid1,Haddar Nader1,Guermazi Noamen1

Affiliation:

1. Laboratoire de Génie des Matériaux et Environnement (LGME), Ecole Nationale d'Ingénieurs de Sfax (ENIS), Université de Sfax, Sfax, Tunisia

2. Laboratoire des Matériaux Polymères Avancés, Faculté de Technologie, Université de Bejaia, Bejaia, Algeria

Abstract

In this paper, an experimental study was conducted to characterize industrial PVC pipes and to investigate the effect of hydrothermal aging on their physico-chemical, thermal, and mechanical behavior. Three temperature (25°C, 60°C and 90°C) and full immersion in distilled water were retained as accelerated hydrothermal conditions. Kinetic of water absorption was examined and Fickian behavior was observed. The aging temperature was found to influence the water uptake behavior of PVC samples. Thermogravimetric analysis (TGA) has proved that the pipe material is not pure, while it consists of PVC reinforced with calcium carbonate (CaCO3). After exposure to accelerated aging, TGA and FTIR analysis exhibit preliminary signs of degradation of PVC samples under the retained conditions. Changes affecting the shape and the color of aged samples were examined. Mechanical properties have been characterized, after immersion of 30 days, with an improvement of strength and stiffness of the aged samples, in particular at elevated aging temperature. However, the aging response is accompanied by a loss of ductility for the aged material. These results, even for brief exposure, could help to understand the behavior of PVC composite pipes under hydrothermal conditions.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3