A Numerical Investigation of Thermal-related Matrix Shrinkage Crack and Delamination in Composite T-Piece Specimens Using a Modified Interface Cohesive Model

Author:

Chen Jiye1

Affiliation:

1. Faculty of Technology, University of Portsmouth, Portsmouth, PO1 3AH, UK

Abstract

This article numerically investigated the curing temperature effect on matrix shrinkage crack and the effect of matrix shrinkage cracking on delamination in composite T-piece specimens using a modified interface cohesive model with thermal effects accounted. Thermal relative coefficient was introduced to produce the relative thermal displacement in the formulation of interface cohesive elements. The thermal shrinkage crack in the deltoid region of T-piece was simulated. Effect of this thermal initial cracking on the prediction of dominated delamination [Chen, J., Ravey, E., Hallett, S., Wisnom, M. and Grassi, M. (2009). Prediction of Delamination in Braided Composite T-Piece Specimen, Composites Science and Technology, 69(14): 2363–2367; Chen, J. (2011) Simulation of Multi-directional Crack in Braided Composite T-Piece Specimens Using Cohesive Models, Fatigue & Fracture of Engineering Materials & Structures, 34(2): 123–130.] of T-piece under T-pull loading case was also studied. The investigation indicated that some improper restraints to T-piece specimens during the curing process will induce so called thermal shrinkage cracks in the deltoid region of T-piece. This sort of thermal related matrix shrinkage crack has limited effect on the capacity of T-piece to resist T-pull loading. Radius laminates are the main load carrier in the T-pull loading case. This modeling investigation supplied considerable information for the design and manufacture of T-piece related composite components under pulling condition. Further investigation considering loading cases such as bending and combination with bending and T-pull is suggested in the future work to explore general effects of thermal related matrix shrinkage cracking on delaminating.

Publisher

SAGE Publications

Subject

Condensed Matter Physics,Ceramics and Composites

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3